Interval Energy Flow Analysis in Integrated Electrical and Natural-Gas Systems Considering Uncertainties
Shouxiang Wang and
Shuangchen Yuan
Additional contact information
Shouxiang Wang: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Shuangchen Yuan: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Energies, 2019, vol. 12, issue 11, 1-19
Abstract:
As integrated electrical and natural-gas systems (IENGS) are popularized, the uncertainties brought by variation of electrical load, power generation, and gas load should not be ignored. The aim of this paper is to analyze the impact of those uncertain variables on the steady-state operation of the whole systems. In this paper, an interval energy flow model considering uncertainties was built based on the steady-state energy flow. Then, the Krawczyk–Moore interval iterative method was used to solve the proposed model. To obtain precise results of the interval model, interval addition and subtraction operations were performed by affine mathematics. The case study demonstrated the effectiveness of the proposed approach compared with Monte Carlo simulation. Impacts of uncertainties brought by the variation of electrical load, power generation, and gas load were analyzed, and the convergence of energy flow under different uncertainty levels of electrical load was studied. The results led to the conclusion that each kind of uncertainties would have an impact on the whole system. The proposed method could provide good insights into the operating of IENGS with those uncertainties.
Keywords: integrated electrical and natural-gas systems; interval energy flow; uncertainty analysis; interval mathematics; Krawczyk–Moore interval iterative method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/11/2043/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/11/2043/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:11:p:2043-:d:234983
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().