EconPapers    
Economics at your fingertips  
 

Planning of High Renewable-Penetrated Distribution Systems Considering Complementarity and Cluster Partitioning

Di Hu, Ming Ding, Lei Sun and Jingjing Zhang
Additional contact information
Di Hu: School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
Ming Ding: School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
Lei Sun: School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
Jingjing Zhang: School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

Energies, 2019, vol. 12, issue 11, 1-22

Abstract: Photovoltaic (PV) and wind power (WT) resources can influence each other in some scenarios, and this influence tends to show that the rise of PV resources may indicate the drop of WT resources, and vice versa. This pattern of PV and WT resources influencing each other is called the complementary characteristics of PV and WT power. The complementary characteristics of the power outputs of different kinds of distributed renewable energy resources (DRERs) and the correlation between DRERs outputs and loads can impact the consumption of DRERs by the loads within the grid, which represents the rate of DRER outputs consumed by loads instead of being reduced. In this regard, this paper investigates a planning strategy for DRERs considering these two factors. An improved co-variance matrix method is applied to generate complementary samples of DRERs and correlated samples of DRERs and loads. The samples generated are used to study the impacts of the degree of correlation between DRERs and loads on the consumption ability of DRERs. The concept of the cluster is introduced as a region including DRERs with complementary characteristics. Based on the cluster partition method and the samples generated, the DRERs planning model is proposed to maximize the profits of different DRER stakeholders. The planning model is transformed into a single objective model through the ideal point method. A Benders decomposition-based method is developed to efficiently solve the proposed model, and an actual network in China is used to illustrate its performance. The results show DRER consumption can be significantly improved by the proposed planning model.

Keywords: renewable energy planning; consumption ability; correlated sample generation method; cluster partition; Benders decomposition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/11/2090/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/11/2090/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:11:p:2090-:d:236185

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2090-:d:236185