EconPapers    
Economics at your fingertips  
 

Granite Hydrolysis to Form Deep Brines

Patrick Brady, Carlos Lopez and Dave Sassani
Additional contact information
Patrick Brady: Sandia National Laboratories, Albuquerque, NM 87185, USA
Carlos Lopez: Sandia National Laboratories, Albuquerque, NM 87185, USA
Dave Sassani: Sandia National Laboratories, Albuquerque, NM 87185, USA

Energies, 2019, vol. 12, issue 11, 1-7

Abstract: Reaction path calculations suggest that water fixation by zeolite and chlorite formation can account for much of the high salinity of deep brines in contact with deep granites, as well as their Ca/Na ratios, which reflect the rock-dominated chemistry of such brines. Resultant brines, undiluted by the influx of shallower fresher waters, are likely to be at equilibrium with laumontite, chlorite, calcite, dolomite, anhydrite/gypsum, K-feldspar, quartz, plagioclase, and possibly halite. The growth of laumontite and chlorite consumes water, causing the concentration of residual salts to increase during the formation of such brines. In these analyses, the major trends suggest that these fundamental processes drive this outcome naturally. Predicted phase assemblages and end-point water compositions are relatively unaffected by the chemistry of the starting/reacting fluid. Additionally, mineralogical and mineral compositional variations both appear to have no major impact on brine formational trends. More precise analysis involves the use of Pitzer coefficients and considers Br/Cl exchange in the alteration phases. Explicit consideration of silicate dissolution points to water availability as a key control over granite alteration. Diffusion-limited water availability appears to lead to stagnant systems dominated by the increasing brine density and Ca/Na ratios with depth. Alteration phases tend to decrease permeability and porosity, further isolating such systems from the flow of shallower dilute fluids.

Keywords: boreholes; granite; brines (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/11/2180/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/11/2180/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:11:p:2180-:d:238092

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2180-:d:238092