EconPapers    
Economics at your fingertips  
 

On the Energy Efficiency of Millimeter Wave Massive MIMO Based on Hybrid Architecture

Peerapong Uthansakul and Arfat Ahmad Khan
Additional contact information
Peerapong Uthansakul: School of Telecommunication Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
Arfat Ahmad Khan: School of Telecommunication Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Energies, 2019, vol. 12, issue 11, 1-19

Abstract: Millimeter Wave (mmWave) Massive Multiple Input Multiple Output (MIMO) has been a promising candidate for the current and next generation of cellular networks. The hybrid analogue/digital precoding will be a crucial ingredient in the mmWave cellular systems to reduce the number of Radio Frequency (RF) chains along with the corresponding energy and power consumption of the systems. In this paper, we aim to improve the energy efficiency of mmWave Massive MIMO by using a combination of high dimension analogue precoder and low dimension digital precoder. The spectral efficiency and the corresponding transmitted and consumed power of the mmWave Massive MIMO is formulated by taking all the consumed power from the transmitting side to receiving end into account. We propose the Power Controlled Energy Maximization (PCEM) algorithm in this paper, and the proposed algorithm works by controlling the transmission power to balance the improved radiated energy efficiency and the increased power consumption for a given number of transceiver chains. The simulation and analytical results show that the proposed algorithm performs better than the reference algorithms by maximizing the overall energy efficiency of the system without much complexity.

Keywords: millimeter wave; hybrid architecture; massive MIMO; energy efficient; power consumption (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/11/2227/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/11/2227/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:11:p:2227-:d:238972

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2227-:d:238972