EconPapers    
Economics at your fingertips  
 

Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the Improved Gravitational Search Algorithm

Yanbin Li and Zhen Li
Additional contact information
Yanbin Li: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Zhen Li: School of Economics and Management, North China Electric Power University, Beijing 102206, China

Energies, 2019, vol. 12, issue 12, 1-20

Abstract: The main target of the energy revolution in the new period is coal, but the proportion of coal in primary energy consumption will gradually decrease. As coal is a major producer and consumer of energy, analyzing the trend of coal demand in the future is of great significance for formulating the policy of coal development planning and driving the revolution of energy sources in China. In order to predict coal demand scientifically and accurately, firstly, the index system of influencing factors of coal demand was constructed, and the grey relational analysis method was used to select key indicators as input variables of the model. Then, the kernel function of SVM (support vector machine) was optimized by taking advantage of the fast convergence speed of GSA (gravitational search algorithm), and the memory function and boundary mutation strategy of PSO (particle swarm optimization) were introduced to improve the gravitational search algorithm, and the improved GSA (IGSA)–SVM prediction model was obtained. After that, the effectiveness of IGSA–SVM in predicting coal demand was further proven through empirical and comparative analysis. Finally, IGSA–SVM was used to forecast China’s coal demand in 2018–2025. According to the forecasting results, relevant suggestions about coal supply, consumption, and transformation are put forward, providing scientific basis for formulating an energy development strategy.

Keywords: coal consumption forecasting; support vector machine; improved gravitational search algorithm; grey relational analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/12/2249/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/12/2249/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:12:p:2249-:d:239277

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2249-:d:239277