Feedback Linearization and Reaching Law Based Sliding Mode Control Design for Nonlinear Hydraulic Turbine Governing System
Bicheng Guo and
Jiang Guo
Additional contact information
Bicheng Guo: Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
Jiang Guo: Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
Energies, 2019, vol. 12, issue 12, 1-19
Abstract:
Hydropower as renewable energy has continually expanded at a relatively high rate in the last decade. This expansion calls for more accurate scheme design in hydraulic turbine governing system (HTGS) to ensure its high efficiency. Sliding mode control (SMC) as a robust control method which is insensitive to system uncertainties and disturbances raises interest in the application in HTGS. However, the feature of highly coupled state variables reflects the nonlinear essence of HTGS and SMC studies on the related mathematical model under certain fluctuations are not satisfied. In this regard, a novel SMC design with proportional-integral-derivative manifold is firstly applied to a nonlinear HTGS with a complex conduit system. In dealing with certain fluctuations in speed and load around the rated working condition, the proposed SMC is capable of driving the system to the desired state with smooth and light responses in aspects of the key state variables. The exponential reaching law and introduced boundary layer fasten the speed of converging time and suppress chattering. A necessary integral of sliding parameter added to manifold successfully reduces the latency caused by the anti-regulation feature of HTGS. Three operating scenarios are simulated compared with the PSO-PID method, and results imply that the proposed SMC method equips with accurate trajectory tracking ability and smooth responses. Finally, the strong robustness against system uncertainties is tested.
Keywords: hydraulic turbine governing system; nonlinear turbine model; sliding mode control; input/output feedback linearization; exponential reaching law (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/12/2273/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/12/2273/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:12:p:2273-:d:239609
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().