Effect of Filler Concentration on Tracking Resistance of ATH-Filled Silicone Rubber Nanocomposites
Youngtaek Jeon,
Shin-Ki Hong and
Myungchin Kim
Additional contact information
Youngtaek Jeon: School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Korea
Shin-Ki Hong: School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Korea
Myungchin Kim: School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Korea
Energies, 2019, vol. 12, issue 12, 1-14
Abstract:
It is necessary for polymeric materials to have superior tracking resistance against various stress conditions for outdoor applications. In this study, the effect of nano-sized alumina tri-hydrate (ATH) particles on the tracking resistance of silicone rubber (SiR) is studied. Specimens with filler loadings of 1, 3, 5, 10, and 20 wt % are used for performance characterization. From the inclined plane test (IPT) results, apparent improvement in tracking resistance was achieved by mixing 3 wt % of nano-sized fillers, compared to unfilled specimens. ATH/SiR nanocomposites with 5 wt % loading showed comparable tracking performance to SiO 2 /SiR microcomposites with 20 wt % loading. For detailed analysis, measurements of surface contact angle (SCA) and surface leakage current, and thermo-gravimetric analysis (TGA) were performed. As the nano-ATH filler concentration increased, both thermal stability and leakage current characteristics were improved. Such results agreed with the tracking resistance performance by showing that thermal decomposition and surface charge transport is inhibited in ATH/SiR nanocomposites. Furthermore, performance improvement in nanocomposites was achieved, even at low filler loadings, compared to microcomposites. Meanwhile, the change in SCA was found to be rather limited, regardless of filler loading and filler size.
Keywords: leakage current; nanocomposite; silicone rubber; surface tracking; thermal stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/12/2401/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/12/2401/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:12:p:2401-:d:242123
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().