EconPapers    
Economics at your fingertips  
 

A Unified and Efficient Approach to Power Flow Analysis

HyungSeon Oh
Additional contact information
HyungSeon Oh: Department of Electrical and Computer Engineering, United States Naval Academy; Annapolis, MD 21402, USA

Energies, 2019, vol. 12, issue 12, 1-20

Abstract: Highly nonlinear and nonconvex power flow analysis plays a key role in the monitoring, control, and operation of power systems. There is no analytic solution to power flow problems, and therefore, finding a numerical solution is oftentimes an aim of modern computation in power system analysis. An iterative Newton-Raphson method is widely in use. While most times this method finds a solution in a reasonable time, it often involves numerical robustness issues, such as a limited convergence region and an ill-conditioned system. Sometimes, the truncation error may not be small enough to ignore, which can make the iterative process significantly expansive. We propose a new unified framework, based on the Kronecker product, that does not involve any truncation, and which is bilinear to make it possible to incorporate statistical analysis. The proposed method is tested for power flow, state estimation, probabilistic power flow, and optimal power flow studies on various IEEE model systems.

Keywords: Kronecker product; power flow analysis; alternating least square problem (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/12/2425/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/12/2425/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:12:p:2425-:d:242476

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2425-:d:242476