EconPapers    
Economics at your fingertips  
 

Effect of Irrelevant Variables on Faulty Wafer Detection in Semiconductor Manufacturing

Dongil Kim and Seokho Kang
Additional contact information
Dongil Kim: Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Seokho Kang: Department of Systems Management Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea

Energies, 2019, vol. 12, issue 13, 1-11

Abstract: Machine learning has been applied successfully for faulty wafer detection tasks in semiconductor manufacturing. For the tasks, prediction models are built with prior data to predict the quality of future wafers as a function of their precedent process parameters and measurements. In real-world problems, it is common for the data to have a portion of input variables that are irrelevant to the prediction of an output variable. The inclusion of many irrelevant variables negatively affects the performance of prediction models. Typically, prediction models learned by different learning algorithms exhibit different sensitivities with regard to irrelevant variables. Algorithms with low sensitivities are preferred as a first trial for building prediction models, whereas a variable selection procedure is necessarily considered for highly sensitive algorithms. In this study, we investigate the effect of irrelevant variables on three well-known representative learning algorithms that can be applied to both classification and regression tasks: artificial neural network, decision tree (DT), and k -nearest neighbors ( k -NN). We analyze the characteristics of these learning algorithms in the presence of irrelevant variables with different model complexity settings. An empirical analysis is performed using real-world datasets collected from a semiconductor manufacturer to examine how the number of irrelevant variables affects the behavior of prediction models trained with different learning algorithms and model complexity settings. The results indicate that the prediction accuracy of k -NN is highly degraded, whereas DT demonstrates the highest robustness in the presence of many irrelevant variables. In addition, a higher model complexity of learning algorithms leads to a higher sensitivity to irrelevant variables.

Keywords: faulty wafer detection; semiconductor manufacturing; irrelevant variable; supervised learning; prediction model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/13/2530/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/13/2530/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:13:p:2530-:d:244639

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2530-:d:244639