EconPapers    
Economics at your fingertips  
 

Analyzing the Interaction of Vortex and Gas–Liquid Interface Dynamics in Fuel Spray Nozzles by Means of Lagrangian-Coherent Structures (2D)

Thilo F. Dauch, Cihan Ates, Tobias Rapp, Marc C. Keller, Geoffroy Chaussonnet, Johannes Kaden, Max Okraschevski, Rainer Koch, Carsten Dachsbacher and Hans-Jörg Bauer
Additional contact information
Thilo F. Dauch: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
Cihan Ates: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
Tobias Rapp: Institut für Visualisierung und Datenanalyse (IVD), Karlsruher Institut für Technologie (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany
Marc C. Keller: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
Geoffroy Chaussonnet: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
Johannes Kaden: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
Max Okraschevski: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
Rainer Koch: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
Carsten Dachsbacher: Institut für Visualisierung und Datenanalyse (IVD), Karlsruher Institut für Technologie (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany
Hans-Jörg Bauer: Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany

Energies, 2019, vol. 12, issue 13, 1-16

Abstract: Predictions of the primary breakup of fuel in realistic fuel spray nozzles for aero-engine combustors by means of the SPH method are presented. Based on simulations in 2D, novel insights into the fundamental effects of primary breakup are established by analyzing the dynamics of Lagrangian-coherent structures (LCSs). An in-house visualization and data exploration platform is used in order to retrieve fields of the finite-time Lyapunov exponent (FTLE) derived from the SPH predictions aiming at the identification of time resolved LCSs. The main focus of this paper is demonstrating the suitability of FTLE fields to capture and visualize the interaction between the gas and the fuel flow leading to liquid disintegration. Aiming for a convenient illustration at a high spatial resolution, the analysis is presented based on 2D datasets. However, the method and the conclusions can analoguosly be transferred to 3D. The FTLE fields of modified nozzle geometries are compared in order to highlight the influence of the nozzle geometry on primary breakup, which is a novel and unique approach for this industrial application. Modifications of the geometry are proposed which are capable of suppressing the formation of certain LCSs, leading to less fluctuation of the fuel flow emerging from the spray nozzle.

Keywords: primary breakup; smoothed particle hydrodynamics; Lagrangian-coherent structures; fuel atomization; jet engine combustor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/13/2552/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/13/2552/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:13:p:2552-:d:245174

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2552-:d:245174