EconPapers    
Economics at your fingertips  
 

OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering

Rongheng Lin, Zezhou Ye and Yingying Zhao
Additional contact information
Rongheng Lin: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
Zezhou Ye: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
Yingying Zhao: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Energies, 2019, vol. 12, issue 14, 1-17

Abstract: Customers’ electricity consumption behavior can be studied from daily load data. Studying the daily load data for user behavior pattern analysis is an emerging research area in smart grid. Traditionally, the daily load data can be clustered into different clusters, to reveal the different categories of consumption. However, as user’s electricity consumption behavior changes over time, classical clustering algorithms are not suitable for tracing the changes, as they rebuild the clusters when clustering at any timestamp but never consider the relationship with the clusters in the previous state. To understand the changes of consumption behavior, we proposed an optimized evolutionary clustering (OPEC) algorithm, which optimized the existing evolutionary clustering algorithm by joining the Proper Restart (PR) Framework. OPEC relied on the basic fact that user’s energy consumption behavior would not abruptly change significantly, so the clusters would change progressively and remain similar in adjacent periods, except for an emergency. The newly added PR framework can deal with a situation where data changes dramatically in a short period of time, and where the former frameworks of evolutionary clustering do not work well. We evaluated the OPEC based on daily load data from Shanghai, China and the power load diagram data from UCI machine learning repository. We also carefully discussed the adjustment of the parameter in the optimized algorithm and gave an optimal value for reference. OPEC can be implemented to adapt to this situation and improve clustering quality. By understanding the changes of the users’ power consumption modes, we can detect abnormal power consumption behaviors, and also analyze the changing trend to improve the operations of the power system. This is significant for the regulation of peak load in the power grid. In addition, it can bring certain economic benefits to the operation of the power grid.

Keywords: smart grid; behavior pattern; optimized evolutionary clustering (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/14/2668/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/14/2668/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:14:p:2668-:d:247598

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2668-:d:247598