EconPapers    
Economics at your fingertips  
 

Diesel Mean Value Engine Modeling Based on Thermodynamic Cycle Simulation Using Artificial Neural Network

Eunhee Ko and Jungsoo Park
Additional contact information
Eunhee Ko: Department of Mechanical Engineering, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
Jungsoo Park: Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea

Energies, 2019, vol. 12, issue 14, 1-17

Abstract: This study aims to construct a reduced thermodynamic cycle model with high accuracy and high model execution speed based on artificial neural network training for real-time numerical analysis. This paper proposes a method of constructing a fast average-value model by combining a 1D plant model and exhaust gas recirculation (EGR) control logic. The combustion model of the detailed model uses a direct-injection diesel multi-pulse (DI-pulse) method similar to diesel combustion characteristics. The DI-pulse combustion method divides the volume of the cylinder into three zones, predicting combustion- and emission-related variables, and each combustion step comprises different correction variables. This detailed model is estimated to be within 5% of the reference engine test results. To reduce the analysis time while maintaining the accuracy of engine performance prediction, the cylinder volumetric efficiency and the exhaust gas temperature were predicted using an artificial neural network. Owing to the lack of input variables in the training of artificial neural networks, it was not possible to predict the 0.6–0.7 range for volumetric efficiency and the 1000–1200 K range for exhaust gas temperature. This is because the mean value model changes the fuel injection method from the common rail fuel injection mode to the single injection mode in the model reduction process and changes the in-cylinder combustion according to the injection timing of the fuel amount injected. In addition, the mean value model combined with EGR logic, i.e., the single-input single-output (SISO) coupled mean value model, verifies the accuracy and responsiveness of the EGR control logic model through a step-transient process. By comparing the engine performance results of the SISO coupled mean value model with those of the mean value model, it is observed that the SISO coupled mean value model achieves the desired target EGR rate within 10 s. The EGR rate is predicted to be similar to the response of volumetric efficiency. This process intuitively predicted the main performance parameters of the engine model through artificial neural networks.

Keywords: diesel engine; mean value model; real time simulation; artificial neural network; exhaust gas recirculation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/14/2823/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/14/2823/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:14:p:2823-:d:250601

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2823-:d:250601