Geological Structure Interpretation of Coalbed Methane Enrichment Area based on VMDC and Curvature Attributes
Yaping Huang,
Hanyong Bao and
Xuemei Qi
Additional contact information
Yaping Huang: School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
Hanyong Bao: Research Institute of Petroleum Exploration and Development, Jianghan Oilfield Company, SINOPEC, Wuhan 430223, China
Xuemei Qi: School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
Energies, 2019, vol. 12, issue 15, 1-17
Abstract:
Geological structures play a leading role in the occurrence characteristics of coalbed methane (CBM), and curvature attributes are an important geometric seismic attribute that can be used to identify a geological structure. In view of the characteristics of curvature attributes which are easily affected by noise, this paper proposes a method based on variational mode decomposition and correlation coefficients (VMDC) for denoising, and then extracts curvature attributes for geological structure interpretation. The geological models with anticline, syncline and normal fault structure characteristics are constructed, and curvature attributes of geological models without noise and with different percentages of random noise are calculated respectively. According to the time window test results, the 5 × 5 time window is more suitable in the case of no noise, while 9 × 9 time window is more suitable when there is noise. The results also show that both the median filtering and VMDC can suppress random noise, but VMDC can suppress noise better and improve the accuracy of curvature attributes. Mean curvature attributes can effectively identify geological structures such as anticlines, synclines and faults. Gauss curvature is not ideal for identifying geological structures. Both the maximum positive curvature and the minimum negative curvature have obvious responses to some geological structures. The method has been applied to a CBM enrichment area prediction in Qinshui Basin, China, and the geological structure characteristics of this area have been preliminarily interpreted. The known CBM content information verifies the feasibility and effectiveness of the proposed method.
Keywords: curvature attribute; geological structures; interpretation; CBM; VMDC (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/15/2852/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/15/2852/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:15:p:2852-:d:251247
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().