Reversible Efficiency Variation of Tandem Amorphous/Microcrystalline Si Photovoltaic Modules in Outdoor Operation
Fabio Ricco Galluzzo,
Cosimo Gerardi,
Andrea Canino and
Salvatore Lombardo
Additional contact information
Fabio Ricco Galluzzo: Istituto per la Microelettronica e Microsistemi—Consiglio Nazionale delle Ricerche, Zona Industriale, Ottava Strada n. 5, 95121 Catania, Italy
Cosimo Gerardi: ENEL Green Power, Contrada Blocco Torrazzesn—Z.I., 95121 Catania, Italy
Andrea Canino: ENEL Green Power, Contrada Blocco Torrazzesn—Z.I., 95121 Catania, Italy
Salvatore Lombardo: Istituto per la Microelettronica e Microsistemi—Consiglio Nazionale delle Ricerche, Zona Industriale, Ottava Strada n. 5, 95121 Catania, Italy
Energies, 2019, vol. 12, issue 15, 1-11
Abstract:
The Staebler-Wronski effect in amorphous silicon based photovoltaic devices is responsible for degradation of their power conversion efficiency, within approximately the first one thousand hours of light soaking. Several experimental studies led to highlight the performance instability phenomena for the mentioned devices, underling that recovery and improvement of such performance are observable, by subjecting such devices (both of single-junction and tandem types) to DC reverse bias stresses under illumination, or to operation in the Maximum Power Point (MPP) under variable conditions of temperature and illumination. In this work, we present and discuss the results of novel recent outdoor tests on stabilized specimens (i.e., exposed to 1000 h extended light soaking, before our tests) of tandem amorphous/microcrystalline Si (a-Si/µc-Si) photovoltaic (PV) minimodules operating in their MPP, by analyzing the causes of the performance instability effects, systematically observed on a daily scale. During the mentioned tests, we have monitored the solar cell operating temperature and the incident solar spectrum at various times in different days to verify the effect of cell temperature and solar spectrum changes on the cell performances. The experimental results show a clear correlation between performance improvements of the photovoltaic modules and their thermal history during the outdoor tests, proving the interplay between defect build-up at a lower temperature and defect annealing at a higher temperature, taking place in the solar cells operated in MPP during conventional outdoor operation.
Keywords: performance instability; thermal effects; tandem a-Si/µc-Si PV devices (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/15/2876/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/15/2876/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:15:p:2876-:d:251876
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().