EconPapers    
Economics at your fingertips  
 

Life Cycle Assessment of New High Concentration Photovoltaic (HCPV) Modules and Multi-Junction Cells

Jérôme Payet and Titouan Greffe
Additional contact information
Jérôme Payet: CYCLECO, 18 Avenue Roger Salengro, 01500 Ambérieu-en Bugey, France
Titouan Greffe: CYCLECO, 18 Avenue Roger Salengro, 01500 Ambérieu-en Bugey, France

Energies, 2019, vol. 12, issue 15, 1-24

Abstract: Worldwide electricity consumption increases by 2.6% each year. Greenhouse gas emissions due to electricity production raise by 2.1% per year on average. The development of efficient low-carbon-footprint renewable energy systems is urgently needed. CPVMatch investigates the feasibility of mirror or lens-based High Concentration Photovoltaic (HCPV) systems. Thanks to innovative four junction solar cells, new glass coatings, Position Sensitive Detectors (PSD), and DC/DC converters, it is possible to reach concentration levels higher than 800× and a module efficiency between 36.7% and 41.6%. From a circular economy’s standpoint, the use of concentration technologies lowers the need in active material, increases recyclability, and reduces the risk of material contamination. By using the Life Cycle Assessment method, it is demonstrated that HCPV presents a carbon footprint ranking between 16.4 and 18.4 g CO 2 -eq/kWh. A comparison with other energy means for 16 impact categories including primary energy demand and particle emissions points out that the environmental footprint of HCPV is typically 50 to 100 times lower than fossil fuels footprint. HCPV’s footprint is also three times lower than that of crystalline photovoltaic solutions and is close to the environmental performance of wind power and hydropower.

Keywords: Life Cycle Assessment (LCA); Energy Payback Time; four-junction cells; photovoltaic; carbon footprint; HCPV; multi-criteria; achromatic lens; recycling; circular economy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/15/2916/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/15/2916/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:15:p:2916-:d:252701

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2916-:d:252701