EconPapers    
Economics at your fingertips  
 

A Si-FET-Based High Switching Frequency Three-Level LLC Resonant Converter

Jung-Woo Yang and Sang-Kyoo Han
Additional contact information
Jung-Woo Yang: POELSA, Power Electronics System Laboratory, Kookmin University, Seoul 100-011, Korea
Sang-Kyoo Han: POELSA, Power Electronics System Laboratory, Kookmin University, Seoul 100-011, Korea

Energies, 2019, vol. 12, issue 16, 1-24

Abstract: This paper highlights the proposed silicon field-effect transistor (Si-FET)-based high switching frequency three-level (TL) LLC resonant converter. It provides a detailed operational analysis of the converter; the multilevel (ML) organization of cells; voltage-balancing principles; current-balancing principles; loss comparison between Si-FETs and gallium-nitride (GaN)-FETs; and an optimal design consideration based on loss analysis. This analysis reveals that the switching losses of all power switches can be considerably reduced as the voltage across each switch can be set to half of the input voltage without an additional circuit or control strategy. Moreover, the current of each resonant inductor is automatically balanced by a proposed integrated magnetic (IM)-coupled inductor. Therefore, the operating frequency can be easily increased to near 1 MHz without applying high-performance switches. In addition, the resonant tanks of the converter can be a group of cells for multilevel operation, which indicates that the voltage across each switch is further reduced as more cells are added. Based on the results of the analysis, an optimal design consideration according to the resonant tank and switching frequency is discussed. The proposed converter was validated via a prototype converter with an input of 390 V, an output of 19.5 V/18 A, and a frequency of 1 MHz.

Keywords: three-level LLC resonant converter; 1 MHz operation; Si-FET; voltage balancing; current balancing; multilevel; voltage stress (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/16/3082/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/16/3082/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:16:p:3082-:d:256459

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3082-:d:256459