EconPapers    
Economics at your fingertips  
 

Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness

Natalie Nakaten and Thomas Kempka
Additional contact information
Natalie Nakaten: GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany
Thomas Kempka: GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany

Energies, 2019, vol. 12, issue 17, 1-28

Abstract: Underground coal gasification (UCG) enables utilization of coal reserves, currently not economically exploitable due to complex geological boundary conditions. Hereby, UCG produces a high-calorific synthesis gas that can be used for generation of electricity, fuels, and chemical feedstock. The present study aims to identify economically-competitive, site-specific end-use options for onshore- and offshore-produced UCG synthesis gas, taking into account the capture and storage (CCS) and/or utilization (CCU) of produced CO 2 . Modeling results show that boundary conditions favoring electricity, methanol, and ammonia production expose low costs for air separation, low compression power requirements, and appropriate shares of H 2 /N 2 . Hereby, a gasification agent ratio of more than 30% oxygen by volume is not favorable from the economic and CO 2 mitigation viewpoints. Compared to the costs of an offshore platform with its technical equipment, offshore drilling costs are marginal. Thus, uncertainties related to parameters influenced by drilling costs are negligible. In summary, techno-economic process modeling results reveal that air-blown gasification scenarios are the most cost-effective ones, while offshore UCG-CCS/CCU scenarios are up to 1.7 times more expensive than the related onshore processes. Hereby, all investigated onshore scenarios except from ammonia production under the assumed worst-case conditions are competitive on the European market.

Keywords: underground coal gasification (UCG); economics; cost of electricity (COE); techno-economic model; methanol; ammonia; carbon capture and storage (CCS); carbon capture and utilization (CCU); electricity generation; process simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/17/3252/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/17/3252/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:17:p:3252-:d:260351

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3252-:d:260351