A Cradle-to-Grave Multi-Pronged Methodology to Obtain the Carbon Footprint of Electro-Intensive Power Electronic Products
Giovanni Andrés Quintana-Pedraza,
Sara Cristina Vieira-Agudelo and
Nicolás Muñoz-Galeano
Additional contact information
Giovanni Andrés Quintana-Pedraza: Grupo de Investigación en Ingeniería y Gestión Ambiental (GIGA), Departamento de Ingeniería Civil, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
Sara Cristina Vieira-Agudelo: Grupo de Investigación en Ingeniería y Gestión Ambiental (GIGA), Departamento de Ingeniería Civil, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
Nicolás Muñoz-Galeano: Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
Energies, 2019, vol. 12, issue 17, 1-16
Abstract:
This paper proposes the application of a cradle-to-grave multi-pronged methodology to obtain a more realistic carbon footprint (CF) estimation of electro-intensive power electronic (EIPE) products. The literature review shows that methodologies for establishing CF have limitations in calculation or are not applied from the conception (cradle) to death (grave) of the product; therefore, this paper provides an extended methodology to overcome some limitations that can be applied in each stage during the life cycle assessment (LCA). The proposed methodology is applied in a cradle-to-grave scenario, being composed of two approaches of LCA: (1) an integrated hybrid approach based on an economic balance and (2) a standard approach based on ISO 14067 and PAS 2050 standards. The methodology is based on a multi-pronged assessment to combine conventional with hybrid techniques. The methodology was applied to a D-STATCOM prototype which contributes to the improvement of the efficiency. Results show that D-STATCOM considerably decreases CF and saves emissions taken place during the usage stage. A comparison was made between Sweden and China to establish the environmental impact of D-STATCOM in electrical networks, showing that saved emissions in the life cycle of D-STATCOM were 5.88 and 391.04 ton CO 2 eq in Sweden and China, respectively.
Keywords: carbon footprint (CF); life cycle assessment (LCA); hybrid life cycle assessment; electro-intensive power electronic (EIPE) products; energy efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/17/3347/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/17/3347/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:17:p:3347-:d:262363
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().