EconPapers    
Economics at your fingertips  
 

Development of Thermal Comfort-Based Controller and Potential Reduction of the Cooling Energy Consumption of a Residential Building in Kuwait

Jaesung Park, Taeyeon Kim and Chul-sung Lee
Additional contact information
Jaesung Park: Energy Efficiency Building Materials Center, Energy Division, Korea Conformity Laboratories (KCL), 73 Yangcheong 3-gil, Ochang-eup, Cheongju-si, Chungbuk 28115, Korea
Taeyeon Kim: Department of Architecture & Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Chul-sung Lee: Future Agricultural Research Division, Korea Rural Research Institute, 870 Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15634, Korea

Energies, 2019, vol. 12, issue 17, 1-22

Abstract: In Kuwait, where the government subsidizes approximately 95% of residential electricity bills, most of the country’s energy consumption is for residential use. In particular, air-conditioning (AC) systems for cooling, which are used throughout the year, are responsible for residential electric energy consumption. This study aimed to reduce the amount of energy consumed for cooling purposes by developing a thermal comfort-based controller. Our study commenced by using a simulation model to investigate the possibility of energy reduction when using the predicted mean vote (PMV) for optimal control. The result showed that control optimization would enable the cooling energy consumption to be reduced by 33.5%. The influence of six variables on cooling energy consumption was then analyzed to develop a thermal comfort-based controller. The analysis results showed that the indoor air temperature was the most influential factor, followed by the mean radiant temperature, the metabolic rate, and indoor air velocity. The thermal comfort-based controller-version 1 (TCC-V1) was developed based on the analysis results and experimentally evaluated to determine the extent to which the use of the controller would affect the energy consumed for cooling. The experiments showed that the implementation of TCC-V1 control made it possible to reduce the electric energy consumption by 39.5% on a summer representative day. The results of this study indicate that it is possible to improve indoor thermal comfort while saving energy by using the thermal comfort-based controller in residential buildings in Kuwait.

Keywords: residential building; cooling energy consumption; air-conditioning (AC); predicted mean vote (PMV); temperature setpoint; thermal comfort-based controller (TCC) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/17/3348/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/17/3348/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:17:p:3348-:d:262406

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3348-:d:262406