Aerodynamics of Monolithic Matrices for Supporting Solid Reactant or Catalyst
Václav Tesař
Additional contact information
Václav Tesař: Institute of Thermomechanics, Czech Academy of Sciences, v.v.i., 182 00 Praha 8, Czech Republic
Energies, 2019, vol. 12, issue 17, 1-13
Abstract:
Heterogeneous solid/fluid chemical reactions—as well as reactions dependent on solid catalysts—require spreading the active solid substance on the largest accessible area. The solution is a thin layer covering as much as possible convoluted surface of an inert support. This is nowadays the internal surface of narrow parallel passages. The supporting body is usually ceramic, its passages now mostly of square cross section. Reliable detailed knowledge of pressure drop across the set of passages has to be available, especially for flow control based on fluid property changes (e.g., with temperature or fluid composition). This paper presents results of laboratory measurements as well as numerical flowfield computations of the passage flows, with discovered universal law.
Keywords: reaction; reactants; catalysis; supporting matrices; pressure loss law (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/17/3398/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/17/3398/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:17:p:3398-:d:263734
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().