An Asymptotic Numerical Continuation Power Flow to Cope with Non-Smooth Issue
Yan Huang,
Yuntao Ju and
Zeping Zhu
Additional contact information
Yan Huang: College of Information and Electrical Engineering, China Agricultural University, Haidian District, Beijing 100083, China
Yuntao Ju: College of Information and Electrical Engineering, China Agricultural University, Haidian District, Beijing 100083, China
Zeping Zhu: College of Information and Electrical Engineering, China Agricultural University, Haidian District, Beijing 100083, China
Energies, 2019, vol. 12, issue 18, 1-17
Abstract:
Continuation power flow (CPF) calculation is very important for analyzing voltage stability of power system. CPF calculation needs to deal with non-smooth constraints such as the generator buses reactive power limits. It is still a technical challenge to determine the step size while dealing with above non-smooth constraints in CPF calculation. In this paper, an asymptotic numerical method (ANM) based on Fischer?Burmeister (FB) function, is proposed to calculate CPF. We first used complementarity constraints to cope with non-smooth issues and introduced the FB function to formulate the complementarity constraints. Meanwhile, we introduced new variables for substitution to meet the quadratic function requirements of ANM. Compared with the conventional predictor-corrector method combining with heuristic PV-PQ (PV and PQ are used to describe bus types. PV means that the active power and voltage of the bus are known. PQ means that the active and reactive power of bus are known.) bus type switching, ANM can effectively solve the PV-PQ bus type switching problem in CPF calculation. Furthermore, to assure high efficiency, ANM can rapidly approach the voltage collapse point by self-adaptive step size adjustment and constant Jacobian matrix used for power series expansion. However, conventional CPF needs proper step set in advance and calculates Jacobian matrix for each iteration. Numerical tests on a nine-bus network and a 182-bus network validate that the proposed method is more robust than existing methods.
Keywords: continuation power flow; non-smooth constraints; asymptotic numerical method; complementarity constraints; Fisher–Burmeister function; predictor-corrector method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/18/3493/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/18/3493/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:18:p:3493-:d:266022
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().