EconPapers    
Economics at your fingertips  
 

Finite Element Modeling and Analysis of High Power, Low-loss Flux-Pipe Resonant Coils for Static Bidirectional Wireless Power Transfer

Babatunde Olukotun, Julius Partridge and Richard Bucknall
Additional contact information
Babatunde Olukotun: Department of Mechanical Engineering, University College London, WC1E 6BT London, UK
Julius Partridge: Department of Mechanical Engineering, University College London, WC1E 6BT London, UK
Richard Bucknall: Department of Mechanical Engineering, University College London, WC1E 6BT London, UK

Energies, 2019, vol. 12, issue 18, 1-21

Abstract: This paper presents the optimal modeling and finite element analysis of strong-coupled, high-power and low-loss flux-pipe resonant coils for bidirectional wireless power transfer (WPT), applicable to electric vehicles (EVs) using series-series compensation topology. The initial design involves the modeling of strong-coupled flux-pipe coils with a fixed number of wire-turns. The ohmic and core loss reduction for the optimized coil model was implemented by creating two separate coils that are electrically parallel but magnetically coupled in order to achieve maximum flux linkage between the secondary and primary coils. Reduction in the magnitude of eddy current losses was realized by design modification of the ferrite core geometry and optimized selection of shielding material. The ferrite core geometry was modified to create a C-shape that enabled the boosting and linkage of useful magnetic flux. In addition, an alternative copper shielding methodology was selected with the advantage of having fewer eddy current power losses per unit mass when compared with aluminum of the same physical dimension. From the simulation results obtained, the proposed flux-pipe model offers higher coil-to-coil efficiency and a significant increase in power level when compared with equivalent circular, rectangular and traditional flux-pipe models over a range of load resistance. The proposed model design is capable of transferring over 11 kW of power across an airgap of 200 mm with a coil-to-coil efficiency of over 99% at a load resistance of 60 Ω.

Keywords: electric vehicles; wireless power transfer; ferrite core; finite element modeling; flux-pipe resonant coils; efficiency; core loss; ohmic loss; eddy current loss (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/18/3534/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/18/3534/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:18:p:3534-:d:267422

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3534-:d:267422