The Emission Characteristics of a Diesel Engine During Start-Up Process at Different Altitudes
Liang Fang,
Diming Lou,
Zhiyuan Hu and
Piqiang Tan
Additional contact information
Liang Fang: School of Automotive Studies, Tongji University, Shanghai 201804, China
Diming Lou: School of Automotive Studies, Tongji University, Shanghai 201804, China
Zhiyuan Hu: School of Automotive Studies, Tongji University, Shanghai 201804, China
Piqiang Tan: School of Automotive Studies, Tongji University, Shanghai 201804, China
Energies, 2019, vol. 12, issue 18, 1-15
Abstract:
With increasingly stringent emission regulations, the cold start emissions have become more important than ever. Using a low compression ratio is a feasible way to improve a heavy-duty engine’s efficiency and emissions. However, cold start performance restricts the development of this technology, especially at high altitudes. In response, we conducted a study of the emissions of a heavy-duty low-compression-ratio diesel engine during start-up process at different altitudes. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments of 0 m, 1000 m, 2000 m, 3000 m, 3750 m and 4500 m. The gas, particulate and volatile organic compound (VOC) emissions were analyzed with speed and cycle during the start-up process. The results indicated that cold start performance and combustion characteristics became worse as altitudes increased. The gas and particulate emissions of carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbon (THC) and nitrous oxide (NO X ) almost all increased as the engine speed and altitude increased, and was much higher than in idle conditions. The PN and PM emissions in each particle diameter also increased as the altitude increased, which was the same as the nucleation mode and the accumulation mode particles. VOC emissions were also measured, which increased during the start-up process as altitudes increased.
Keywords: high altitudes; gaseous and particle emissions; cold start; VOC; plateau simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/18/3556/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/18/3556/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:18:p:3556-:d:267971
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().