A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches
Sizhou Sun,
Jingqi Fu and
Ang Li
Additional contact information
Sizhou Sun: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
Jingqi Fu: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
Ang Li: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
Energies, 2019, vol. 12, issue 18, 1-22
Abstract:
Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.
Keywords: two-stage decomposition; extreme learning machine; least square support vector machine; wavelet neural network; partial autocorrelation function; wind power forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/18/3586/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/18/3586/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:18:p:3586-:d:268843
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().