Thermal Performance Optimization and Experimental Evaluation of Vacuum-Glazed Windows Manufactured via the In-Vacuum Method
Jaesung Park,
Myunghwan Oh and
Chul-sung Lee
Additional contact information
Jaesung Park: Energy Efficiency Building Materials Center, Energy Division, Korea Conformity Laboratories (KCL), 73, Yangcheong 3-gil, Ochang-eup, Cheongju-si 28115, Chungbuk, Korea
Myunghwan Oh: Energy Efficiency Building Materials Center, Energy Division, Korea Conformity Laboratories (KCL), 73, Yangcheong 3-gil, Ochang-eup, Cheongju-si 28115, Chungbuk, Korea
Chul-sung Lee: Future Agricultural Research Division, Rural Research Institute, 870, Haean-ro, Sangnok-gu, Ansan-si 15634, Gyeonggi-do, Korea
Energies, 2019, vol. 12, issue 19, 1-19
Abstract:
Windows are essential in buildings; however, they have poor thermal performance, so extensive research has been conducted on improving their performance. In this study, we developed vacuum-glazed windows with excellent insulation via the in-vacuum method, which shortens the manufacturing time and vacuuming degree considerably. In addition, the configuration of the pillars, low-emissivity (low-e) coating, and frame from a thermal performance perspective was experimentally optimized. The results revealed that the optimal pillar placement spacing is 40 mm and that the low-e coating surface must be located inside the vacuum layer to maximize insulation performance. The vacuum-glazed window produced by the in-vacuum method was applied to an actual residential building to investigate its thermal performance, which was compared with that of a triple-glazed window. The results showed that the center-of-glazing heat flow of the vacuum-glazed window was approximately 0.8 W/m 2 K lower than that of the triple-glazed window. The difference between the average indoor and outdoor surface temperatures during the nighttime was found to be up to 35.1 °C for the vacuum-glazed window and 23.1 °C for the triple-glazed window. Therefore, the energy efficiency of the building can be greatly improved by applying vacuum windows manufactured via the in-vacuum method and optimized for the best thermal performance.
Keywords: vacuum glazing; in-vacuum method; pumping decompression method; vacuum-glazed window; thermal performance; U-value; guarded hot box method; building heating and cooling energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/19/3634/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/19/3634/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:19:p:3634-:d:270120
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().