EconPapers    
Economics at your fingertips  
 

The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands

Aiden Peakman and Bruno Merk
Additional contact information
Aiden Peakman: National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK
Bruno Merk: National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK

Energies, 2019, vol. 12, issue 19, 1-16

Abstract: There is growing interest in the use of advanced reactor systems for powering industrial processes which could significantly help to reduce CO 2 emissions in the global energy system. However, there has been limited consideration into the role nuclear power would play in meeting current and future industry heat demand, especially with respect to the advantages and disadvantages nuclear power offers relative to other competing low-carbon technologies, such as Carbon Capture and Storage (CCS). In this study, the current market needs for high temperature heat are considered based on UK industry requirements and work carried out in other studies regarding how industrial demand could change in the future. How these heat demands could be met via different nuclear reactor systems is also presented. Using this information, it was found that the industrial heat demands for temperature in the range of 500 ? C to 1000 ? C are relatively low. Whilst High Temperature Gas-cooled Reactors (HTGRs), Very High Temperature Reactors (VHTRs), Gas-cooled Fast Reactors (GFRs) and Molten Salt Reactors (MSRs) have an advantage in terms of capability to achieve higher temperatures (>500 ? C), their relative benefit over Liquid Metal-cooled Fast Reactors (LMFRs) and Light Water Reactors (LWRs) is actually smaller than previous studies indicate. This is because, as is shown here, major parts of the heat demand could be served by almost all reactor types. Alternative (non-nuclear) means to meet industrial heat demands and the indirect application of nuclear power, in particular via producing hydrogen, are also considered. As hydrogen is a relatively poor energy carrier, current trends indicate that the use of low-carbon derived hydrogen is likely to be limited to certain applications and there is a focus in this study on the emerging demands for hydrogen.

Keywords: process heat; industry; generation-IV; hydrogen; SMR; nuclear reactors (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/19/3664/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/19/3664/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:19:p:3664-:d:270575

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3664-:d:270575