Axisymmetric Numerical Investigation on Steam Bubble Condensation
Haibo Li,
Maocheng Tian and
Liangliang Tang
Additional contact information
Haibo Li: School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Maocheng Tian: School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Liangliang Tang: General Machinery Research Institute, Hefei 230000, China
Energies, 2019, vol. 12, issue 19, 1-15
Abstract:
In order to obtain a high-accuracy and adaptable condensation phase change model, this paper selects the Nusselt number correlation formula that Kim proposed based on the experimental data and adjusts the Nusselt number in the bubble condensation process by calculating the phase change coefficient of the Lee model in the UDF. Through the simulation and fine-tuning of the 12 groups of operating conditions, the formula for the change of the phase change coefficient of the Lee model during the bubble condensation process is obtained. The accuracy and wide applicability of the variation formula are verified by comparison with various types of experimental data. The Lee model provides a certain reference for the numerical simulation of the bubble condensation process. The numerical simulation of the condensation process of vapor bubbles is carried out by using the formula of the phase change coefficient. The error between the simulation result of the bubble volume change and the experimental result is lower than ±15%, which basically verified the reliability of the numerical model adopted in this study. The bubble condensation process has been analyzed under various operating conditions. The simulation results show that when the bubble rises, disturbance occurs with the fluid and several tiny eddies are generated on the side of the bubble. Micro-circulation of the vapor inside the bubble accelerates the heat and mass transfer rate at the gas–liquid interface. When condensation occurs, the mass transfer rate at the interface is different and the pressure inside the bubble is higher than that around it.
Keywords: bubble condensation; modified Lee model; CFD; multiphase flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/19/3757/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/19/3757/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:19:p:3757-:d:272502
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().