Enhancement of Mist Flow Cooling by Using V-Shaped Broken Ribs
Kuan-Tzu Huang and
Yao-Hsien Liu
Additional contact information
Kuan-Tzu Huang: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
Yao-Hsien Liu: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
Energies, 2019, vol. 12, issue 19, 1-18
Abstract:
Substantial heat transfer enhancement can be achieved by cooling with air/water mist flow because of droplet impingement and liquid film/fragment evaporation on the heated surface, which leads to a high heat-removal rate. An experimental investigation was conducted in a square channel with continuous and broken V-shaped ribs. To generate a mist flow, micro droplets were introduced into the gas stream. The rib angle of attack was 45°, and the rib spacing-to-height ratios were 10 and 20. The air Reynolds number ranged from 7900 to 24,000, and the water-to-air volume flow ratio was less than 0.1%. The net heat inputs ranged from 1.1–3.1 W/cm 2 and 3.4–9.4 W/cm 2 for the air and mist flow cases, respectively. Because the deposited liquid fragments produced uneven temperature distribution on the heated surface, steady-state infrared thermography was used to visualize the heat transfer distribution. Two to seven times higher heat transfer was attained for the broken ribs when using the mist flow than when using air flow. This increase was mainly attributed to the broken structure, which facilitated liquid transport and enhanced liquid coverage. In addition, the broken ribs produced a smaller friction factor than continuous ribs. The broken structures were beneficial for higher thermal performance in the mist flow.
Keywords: mist flow; broken ribs; droplet; drainage channel; global sizing velocimetry (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/19/3785/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/19/3785/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:19:p:3785-:d:273869
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().