A Two-Step Framework for Energy Local Area Network Scheduling Problem with Electric Vehicles Based on Global–Local Optimization Method
Xin Li,
Xiaodi Zhang and
Yuling Fan
Additional contact information
Xin Li: School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China
Xiaodi Zhang: State Grid Beijing Electric Power Company, Beijing 100031, China
Yuling Fan: College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
Energies, 2019, vol. 12, issue 1, 1-17
Abstract:
To reduce the fluctuation of renewable energy (RE) supply and improve the economic efficiency of the power grid, the energy local area network (ELAN), which is a subnetwork of the energy internet (EI), plays an important role in specific regions. Electric vehicles (EVs), as virtual energy storage (VES) in ELANs, are helpful to decrease the fluctuations of RE supply. However, how to use EVs in ELANs is a complex issue, considering the uncertainties of EVs’ charging demand, the forecast data errors of RE sources, etc. In this paper, a typical ELAN structure is established, taking into account RE sources, load response system, and a distributed energy storage (DES) system including EVs. A two-step optimization framework for ELAN scheduling problem is proposed. A global optimization model based on forecast data is built to maximize the income of ELAN, and an online local optimization model is introduced to minimize the correction cost utilizing prior knowledge. Finally, the proposed two-step optimization framework is applied to a series of real-world ELAN scheduling problems. The results show that DES system with EVs can reduce the volatility of RE supply evidently, and the proposed method is able to maximize the income of the ELAN efficiently.
Keywords: energy local area network scheduling; virtual energy storage; two-step optimization framework; day-ahead scheduling strategy; online local optimization; prior knowledge (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/1/195/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/1/195/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:1:p:195-:d:195878
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().