Cost-Optimal Plus Energy Building in a Cold Climate
Szymon Firląg
Additional contact information
Szymon Firląg: The Faculty of Civil Engineering, Warsaw University of Technology, Aleja Armii Ludowej 16, 00-637 Warsaw, Poland
Energies, 2019, vol. 12, issue 20, 1-20
Abstract:
The main objective of this article is to propose possible requirements for cost-optimal plus energy building in a cold, heating dominated climate. The open question is what is more cost-effective: reduction of energy demand or increase of production from renewable energy sources. The target of the research was to check which solution has the lowest investment and maintenance costs. The analysis was made for a single-family house located in central Poland, including three different energy standards: WT2021 with energy need for heating ≤100 kWh/(m² year), NF40 with energy need for heating ≤40 kWh/(m² year) and NF15 with energy need for heating ≤15 kWh/(m² year)). Air and ground source heat pumps were used as a heat source and a photovoltaic system for the production of the electrical energy. For each case the investment and running costs were calculated very precisely, taking into account heating, ventilation, domestic hot water and auxiliary systems. Global cost for a 30-year period showed that house variants with air source heat pumps are more cost effective. The investment, replacement and maintenance cost related with energy systems have the biggest share in the global cost. Reaching the plus energy standard was possible only in the case of low-energy standard NF40 and NF15. Based on this research the proposed requirements for plus energy single-family residential buildings in central Poland are the following: the final (delivered) electrical energy demand (including heating, ventilation, domestic hot water and auxiliary systems) <45 kWh/(m² year) and the on-site electrical energy production >45 kWh/(m² year).
Keywords: plus energy; cost-optimal; single family house; renewable energy sources; heat pump (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/20/3841/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/20/3841/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:20:p:3841-:d:275265
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().