EconPapers    
Economics at your fingertips  
 

Energy Commodities: A Review of Optimal Hedging Strategies

George Halkos () and Apostolos S. Tsirivis ()
Additional contact information
Apostolos S. Tsirivis: Laboratory of Operations Research, Department of Economics, University of Thessaly, 33888 Volos, Greece

Energies, 2019, vol. 12, issue 20, 1-19

Abstract: Energy is considered as a commodity nowadays and continuous access along with price stability is of vital importance for every economic agent worldwide. The aim of the current review paper is to present in detail the two dominant hedging strategies relative to energy portfolios, the Minimum-Variance hedge ratio and the expected utility maximization methodology. The Minimum-Variance hedge ratio approach is by far the most popular in literature as it is less time consuming and computationally demanding; nevertheless by applying the appropriate multivariate model Garch family volatility model, it can provide a very reliable estimation of the optimal hedge ratio. However, this becomes possible at the cost of a rather restrictive assumption for infinite hedger’s risk aversion. Within an uncertain worldwide economic climate and a highly volatile energy market, energy producers, retailers and consumers had to become more adaptive and develop the necessary energy risk management and optimal hedging strategies. The estimation gap of an optimal hedge ratio that would be subject to the investor’s risk preferences through time is filled by the relatively more complex and sophisticated expected utility maximization methodology. Nevertheless, if hedgers share infinite risk aversion or if alternatively the expected futures price is approximately zero the two methodologies become equivalent. The current review shows that when evidence from the energy market during periods of extremely volatile economic climate is considered, both hypotheses can be violated, hence it becomes reasonable that especially for extended hedging horizons it would be wise for potential hedgers to take into consideration both methodologies in order to build a successful and profitable hedging strategy.

Keywords: energy commodities; hedging strategies; minimum-variance hedge ratio; expected utility maximization; risk aversion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/20/3979/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/20/3979/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:20:p:3979-:d:278200

Access Statistics for this article

Energies is currently edited by Prof. Dr. Enrico Sciubba

More articles in Energies from MDPI, Open Access Journal
Bibliographic data for series maintained by XML Conversion Team ().

 
Page updated 2020-01-27
Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3979-:d:278200