EconPapers    
Economics at your fingertips  
 

Cluster Analysis of Distribution Grids in Baden-Württemberg

Tobias Rösch and Peter Treffinger
Additional contact information
Tobias Rösch: Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany
Peter Treffinger: Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany

Energies, 2019, vol. 12, issue 20, 1-25

Abstract: With the growing share of renewable energies in the electricity supply, transmission and distribution grids have to be adapted. A profound understanding of the structural characteristics of distribution grids is essential to define suitable strategies for grid expansion. Many countries have a large number of distribution system operators (DSOs) whose standards vary widely, which contributes to coordination problems during peak load hours. This study contributes to targeted distribution grid development by classifying DSOs according to their remuneration requirement. To examine the amendment potential, structural and grid development data from 109 distribution grids in South-Western Germany, are collected, referring to publications of the respective DSOs. The resulting data base is assessed statistically to identify clusters of DSOs according to the fit of demographic requirements and grid-construction status and thus identify development needs to enable a broader use of regenerative energy resources. Three alternative algorithms are explored to manage this task. The study finds the novel Gauss-Newton algorithm optimal to analyse the fit of grid conditions to regional requirements and successfully identifies grids with remuneration needs. It is superior to the so far used K-Means algorithm. The method developed here is transferable to other areas for grid analysis and targeted, cost-efficient development.

Keywords: classification of DSOs; photovoltaic feed in; power grid statistics; cluster analysis, statistical analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/20/4016/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/20/4016/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:20:p:4016-:d:279102

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:4016-:d:279102