Modeling and Simulation of Temperature and Relative Humidity Inside a Growth Chamber
Germán Díaz-Flórez,
Jorge Mendiola-Santibañez,
Luis Solís-Sánchez,
Domingo Gómez-Meléndez,
Ivan Terol-Villalobos,
Hector Gutiérrez-Bañuelos,
Ma. Araiza-Esquivel,
Gustavo Espinoza-García,
Juan García-Escalante and
Carlos Olvera-Olvera
Additional contact information
Germán Díaz-Flórez: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Jorge Mendiola-Santibañez: Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
Luis Solís-Sánchez: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Domingo Gómez-Meléndez: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Ivan Terol-Villalobos: Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico
Hector Gutiérrez-Bañuelos: Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Zacatecas 98500, Mexico
Ma. Araiza-Esquivel: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Gustavo Espinoza-García: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Juan García-Escalante: IDGreen Company, Querétaro 76915, Mexico
Carlos Olvera-Olvera: Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Energies, 2019, vol. 12, issue 21, 1-22
Abstract:
Modeling and simulation of internal variables such as temperature and relative humidity are relevant for designing future climate control systems. In this paper, a mathematical model is proposed to predict the internal variables temperature and relative humidity (RH) of a growth chamber (GCH). Both variables are incorporated in a set of first-order differential equations, considering an energy-mass balance. The results of the model are compared and assessed in terms of the coefficients of determination (R 2 ) and the root mean squared error (RMSE). The R 2 and RMSE computed were R 2 = 0.96, R 2 = 0.94, RMSE = 0.98 °C, and RMSE = 1.08 °C, respectively, for the temperature during two consecutive weeks; and R 2 = 0.83, R 2 = 0.81, RMSE = 5.45%RH, and RMSE = 5.48%RH, respectively, for the relative humidity during the same period. Thanks to the passive systems used to control internal conditions, the growth chamber gives average differences between inside and outside of +0.34 °C for temperature, and +15.7%RH for humidity without any climate control system. Operating, the GCH proposed in this paper produces 3.5 kg of wet hydroponic green forage (HGF) for each kilogram of seed (corn or barley) harvested on average.
Keywords: modeling and simulation; temperature and relative humidity; growth chamber; hydroponic green forage; growing system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/21/4056/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/21/4056/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:21:p:4056-:d:279913
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().