Providing Fault Ride-Through Capability of Turbo-Expander in a Thermal Power Plant
Mohammadali Norouzi and
Matti Lehtonen
Additional contact information
Mohammadali Norouzi: Department of Electrical and Electronics Engineering, Shiraz University of Technology, 71557-13876 Shiraz, Iran
Matti Lehtonen: Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150 Espoo, Finland
Energies, 2019, vol. 12, issue 21, 1-19
Abstract:
This paper aims to make possible the operation of a turbo-expander (TE) as a renewable resource at the Neka power plant in fault condition in the auxiliary service system (ASS), which is considered one of the fundamental problems in network operation. In this paper, the effect of the failure on the performance of the TE is analyzed whilst the performance of a dynamic voltage restorer (DVR) and static synchronous compensator (STATCOM) to compensate the fault in the ASS network is investigated. To improve the performance of DVR, a novel topology is developed; additionally, the compensatory strategies are assessed, simulated, and validated. In order to optimize the performance of the compensators, their possible presence situations on the ASS in various scenarios under the conditions of severe disturbance, synchronization of fault conditions, and starting of TE are tested. The results of PSCAD/EMTDC software simulation demonstrate that by applying the improved topology and selected compensation strategy of DVR, severe voltage sags are compensated, and the fault ride-through (FRT) capability for the TE is provided. Eventually, it is evident that the proposed solution is technically and economically feasible and the TE can supply the total ASS power consumption in all disturbances.
Keywords: fault ride-through capability; turbo-expander; dynamic voltage restorer (DVR); static synchronous compensator (STATCOM); auxiliary service system (ASS) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/21/4113/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/21/4113/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:21:p:4113-:d:281048
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().