Characteristics of a New Polymer Electrolyte Electrolysis Technique with Only Cathodic Media Supply Coupled to a Photovoltaic Panel
Martin Müller,
Walter Zwaygardt,
Edward Rauls,
Michael Hehemann,
Stefan Haas,
Lars Stolt,
Holger Janssen and
Marcelo Carmo
Additional contact information
Martin Müller: Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
Walter Zwaygardt: Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
Edward Rauls: Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
Michael Hehemann: Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
Stefan Haas: Institute of Energy and Climate Research, Photovoltaics (IEK-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
Lars Stolt: Solibro Research AB, Vallvägen 5, SE-756 51 Uppsala, Sweden
Holger Janssen: Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
Marcelo Carmo: Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
Energies, 2019, vol. 12, issue 21, 1-14
Abstract:
Herein we discuss polymer electrolyte membrane (PEM) electrolysis stacks and systems we developed that are optimized for direct coupling to a photovoltaic (PV) panel. One advantage of PEM systems is their use of non-corrosive and non-toxic media. Thus, safe outdoor operation can be guaranteed, even in the case of a leakage. The system design was adapted to reduce the number of connection tubes, allowing for a series connection of multiple stacks at low cost and high reliability. One coupled PEM/PV system was tested under various temperature and irradiance conditions. All system components were also thoroughly characterized. The characterization was used to calibrate simple models of the individual components. Finally, the models were used to predict the system’s solar-to-hydrogen efficiency under different operating conditions and to find an optimal configuration for real-world outdoor operation.
Keywords: PEM electrolysis; direct coupling of PV and electrolysis; advanced system configuration with only one pipe; no alkaline media; subzero temperature efficiency; low cost-low catalyst loading (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/21/4150/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/21/4150/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:21:p:4150-:d:281903
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().