EconPapers    
Economics at your fingertips  
 

A Multi-Step Approach to Modeling the 24-hour Daily Profiles of Electricity Load using Daily Splines

Abdelmonaem Jornaz and V. A. Samaranayake
Additional contact information
Abdelmonaem Jornaz: Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468, USA
V. A. Samaranayake: Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USA

Energies, 2019, vol. 12, issue 21, 1-22

Abstract: Forecasting of real-time electricity load has been an important research topic over many years. Electricity load is driven by many factors, including economic conditions and weather. Furthermore, the demand for electricity varies with time, with different hours of the day and different days of the week having an effect on the load. This paper proposes a hybrid load-forecasting method that combines classical time series formulations with cubic splines to model electricity load. It is shown that this approach produces a model capable of making short-term forecasts with reasonable accuracy. In contrast to forecasting models that utilize a multitude of regressor variables observed at multiple time points within a day, only the hourly temperature is used in the proposed model and predictive power gains are achieved through the modeling of the 24-hour load profiles across weekends and weekdays while also taking into consideration seasonal variations of such profiles. Long-term trends are accounted for by using population and economic variables. The proposed approach can be used as a stand-alone predictive platform or be used as a scaffolding to build a more complex model involving additional inputs. The data cover the period from 1 January 1993 through 31 December 2013 from the Atlantic City Electric zone.

Keywords: forecasting; time series; cubic splines; real-time electricity load; seasonal patterns (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/21/4169/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/21/4169/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:21:p:4169-:d:282440

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4169-:d:282440