Optimization and Exergy Analysis of Nuclear Heat Storage and Recovery
Anna Kluba and
Robert Field
Additional contact information
Anna Kluba: Department of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, 689-882 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea
Robert Field: Department of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, 689-882 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea
Energies, 2019, vol. 12, issue 21, 1-18
Abstract:
The APR1400 Nuclear Heat Storage and Recovery (NHS&R) System described here represents the conceptual design and interface of a tertiary cycle with the secondary system of the Korean nuclear reactor plant APR1400. The system is intended to reliably and efficiently store and recover thermal energy from a Nuclear Power Plant (NPP) steam system in order to allow flexible power generation using an economical and scalable design. The research incorporates a comprehensive performance analysis of three interface configurations with comparisons based on the 1st and 2nd Laws of Thermodynamics. The investigated configurations are also ranked based on impact analysis of the NHS&R System on the plant configuration and operation. Input data used in the analysis is based on calibrated thermodynamic models of the system arrangements. Results were used to select the preferred APR1400 NHS&R System design configuration as characterized by: (i) maximum system efficiency, (ii) minimized energy losses, (iii) limited impact on existing plant Systems, Structures, and Components (SSC), and (iv) limited impact on plant operations. Case 3 offers several comparative advantages including: (i) high round trip efficiency, (ii) minimal impact on existing plant and equipment, (iii) high utilization of the heat transport and storage media, and (iv) good system control options.
Keywords: APR1400; energy efficiency; energy storage; exergy; heat storage; thermal energy storage; thermodynamic analysis; TES (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/21/4205/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/21/4205/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:21:p:4205-:d:283414
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().