Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock
Qingxiang Huang and
Yanpeng He
Additional contact information
Qingxiang Huang: School of Energy Engineering, Xi’an University of Science and Technology, Shaanxi, Xi’an 710054, China
Yanpeng He: School of Energy Engineering, Xi’an University of Science and Technology, Shaanxi, Xi’an 710054, China
Energies, 2019, vol. 12, issue 21, 1-22
Abstract:
The overburden movement of the large mining height working face of shallow buried thin bedrock (SBTB) is a complex engineering problem with “time-space-intension”, which is of great significance to realize efficient and safe mining in the northern Shaanxi mining area. Based on the research object of No. 22201 working face in Zhangjiamao Coal Mine, the roof structure characteristics of large mining height working face in SBTB are researched by field drilling measurement, laboratory test, physical and numerical simulation. The results show that: (1) Based on the measured data of the drillholes, it is concluded that under the mining conditions of SBTB with large mining height, the roof movement is ahead of the weighting of the working face, and the working resistance has a significant time effect. The advanced movement distance is about 20 m, which can be used as an early warning index of the weighting. The lag movement distance in the roof with horizon of 30 m is two periodic weighting intervals, which are about 26 m. (2) The first weighting interval of the working face is 32 m. The roof first break has obvious step sinking phenomenon, and the measured surface appears at a position 45 m away from the transport slot. It is statistically concluded that the periodic weighting interval is 9.5~16.5 m, the average weighting interval is 13 m, which is equivalent to the periodic dynamic crack spacing of the surface. (3) The results of field measurement and physical simulation show that the breaking angle of the roof of the No. 22201 large mining height is about 66°, and the periodic stepping distance of the T-junction suspension area is 6~8m. Along the strike of the working face, the roof breaking is mainly arc arched. The research results ensure the safe and green mining of shallow coal seam.
Keywords: shallow coal seam; thin bedrock; large mining height; roof structure; ground pressure law; front abutment pressure (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/21/4208/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/21/4208/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:21:p:4208-:d:283498
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().