Multi-Objective Optimization for Determining Trade-Off between Output Power and Power Fluctuations in Wind Farm System
Bui Van-Hai,
Akhtar Hussain,
Woon-Gyu Lee and
Hak-Man Kim
Additional contact information
Bui Van-Hai: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Akhtar Hussain: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Woon-Gyu Lee: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Hak-Man Kim: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Energies, 2019, vol. 12, issue 22, 1-18
Abstract:
In this paper, a multi-objective optimization method is proposed to determine trade-off between conflicting operation objectives of wind farm (WF) systems, i.e., maximizing the output power and minimizing the output power fluctuation of the WF system. A detailed analysis of the effects of different objective’s weight values and battery size on the operation of the WF system is also carried out. This helps the WF operator to decide on an optimal operation point for the whole system to increase its profit and improve output power quality. In order to find out the optimal solution, a two-stage optimization is also developed to determine the optimal output power of the entire system as well as the optimal set-points of wind turbine generators (WTGs). In stage 1, the WF operator performs multi-objective optimization to determine the optimal output power of the WF system based on the relevant information from WTGs’ and battery’s controllers. In stage 2, the WF operator performs optimization to determine the optimal set-points of WTGs for minimizing the power deviation and fulfilling the required output power from the previous stage. The minimization of the power deviation for the set-points of WTGs helps the output power of WTGs much smoother and therefore avoids unnecessary internal power fluctuations. Finally, different case studies are also analyzed to show the effectiveness of the proposed method.
Keywords: energy management system; multi-objective function; optimal set-points; two-stage optimization; wind farm operation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/22/4242/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/22/4242/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:22:p:4242-:d:284402
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().