Long-Term Projection of Renewable Energy Technology Diffusion
Tadeusz Skoczkowski,
Sławomir Bielecki and
Joanna Wojtyńska
Additional contact information
Tadeusz Skoczkowski: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, PL 00-665 Warsaw, Poland
Sławomir Bielecki: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, PL 00-665 Warsaw, Poland
Joanna Wojtyńska: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, PL 00-665 Warsaw, Poland
Energies, 2019, vol. 12, issue 22, 1-24
Abstract:
The EU aims at increasing the use of renewable energy sources (RES), mainly solar-photovoltaic (PV) and wind technologies. Projecting the future, in this respect, requires a long-term energy modeling which includes a rate of diffusion of novel technologies into the market and the prediction of their costs. The aim of this article has been to project the pace at which RES technologies diffused in the past or may diffuse in the future across the power sector. This analysis of the dynamics of technologies historically as well as in modeling, roadmaps and scenarios consists in a consistent analysis of the main parameters of the dynamics (pace of diffusion and extent of diffusion in particular markets). Some scenarios (REMIND, WITCH, WEO, PRIMES) of the development of the selected power generation technologies in the EU till 2050 are compared. Depending on the data available, the learning curves describing the expected development of PV and wind technologies till 2100 have been modeled. The learning curves have been presented as a unit cost of the power versus cumulative installed capacity (market size). As the production capacity increases, the cost per unit is reduced thanks to learning how to streamline the manufacturing process. Complimentary to these learning curves, logistic S-shape functions have been used to describe technology diffusion. PV and wind generation technologies for the EU have been estimated in time domain till 2100. The doubts whether learning curves are a proper method of representing technological change due to various uncertainties have been discussed. A critical analysis of effects of the commonly applied models for a long-term energy projection (REMIND, WITCH) use has been conducted. It has been observed that for the EU the analyzed models, despite differences in the target saturation levels, predict stagnation in the development of PV and wind technologies from around 2040. Key results of the analysis are new insights into the plausibility of future deployment scenarios in different sectors, informed by the analysis of historical dynamics of technology diffusion, using to the extent possible consistent metrics.
Keywords: photovoltaics; wind energy; energy projection; learning curves; logistic curves (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/22/4261/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/22/4261/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:22:p:4261-:d:285004
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().