Study on Thermal Energy Conversion Theory in Drilling Process of Coal and Rock Mass with Different Stresses
Pengqi Qiu,
Xuehui Li,
Jianguo Ning,
Jun Wang and
Shang Yang
Additional contact information
Pengqi Qiu: State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
Xuehui Li: State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
Jianguo Ning: State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
Jun Wang: State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
Shang Yang: State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
Energies, 2019, vol. 12, issue 22, 1-14
Abstract:
In view of the problem that the evolutionary mechanism of bit temperature during the drilling process is still unclear and the influencing factors are complex, this paper analyzes the causes of heat generation and the factors of heat production when the drill bit interacts with the coal and rock mass. Considering the stress field distribution of coal and rock mass and the dynamic characteristics of drilling, a three-dimensional mechanical structure model of bit drilling is established in this paper, based on the energy conservation theory and introducing the friction heat micro-distribution mechanism. The corresponding relationship between coal stress and the bit temperature variation rate is obtained in this paper. Therefore, the temperature rise condition model and the coal stress identification model can be verified, combined with the existing experimental data. The result shows that the temperature of bit drilling is affected by factors such as bit geometry and drilling parameters, as well as the strength and stress state of the coal and rock. Without considering other factors, the rate of increase in bit temperature is proportional to the stress of the coal and rock mass. Based on the research results, the temperature rate of the drill bit can be used as an index to identify the stress areas of coal and rock mass. Research results provide a theoretical basis for the identification of high-stress risk areas in coal mines.
Keywords: drilling chip temperature method; bit; temperature rate; stress of coal and rock (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/22/4282/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/22/4282/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:22:p:4282-:d:285550
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().