Analysis of Energy Flux Vector on Natural Convection Heat Transfer in Porous Wavy-Wall Square Cavity with Partially-Heated Surface
Yan-Ting Lin and
Ching-Chang Cho
Additional contact information
Yan-Ting Lin: Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan
Ching-Chang Cho: Department of Vehicle Engineering, National Formosa University, No.64, Wunhua Rd., Huwei Township, Yunlin County 632, Taiwan
Energies, 2019, vol. 12, issue 23, 1-10
Abstract:
The study utilizes the energy-flux-vector method to analyze the heat transfer characteristics of natural convection in a wavy-wall porous square cavity with a partially-heated bottom surface. The effects of the modified Darcy number, modified Rayleigh number, modified Prandtl number, and length of the partially-heated bottom surface on the energy-flux-vector distribution and mean Nusselt number are examined. The results show that when a low modified Darcy number with any value of modified Rayleigh number is given, the recirculation regions are not formed in the energy-flux-vector distribution within the porous cavity. Therefore, a low mean Nusselt number is presented. The recirculation regions do still not form, and thus the mean Nusselt number has a low value when a low modified Darcy number with a high modified Rayleigh number is given. However, when the values of the modified Darcy number and modified Rayleigh number are high, the energy flux vectors generate recirculation regions, and thus a high mean Nusselt number is obtained. In addition, in a convection-dominated region, the mean Nusselt number increases with an increasing modified Prandtl number. Furthermore, as the length of the partially-heated bottom surface lengthens, a higher mean Nusselt number is presented.
Keywords: energy flux vector; porous cavity; natural convection; wavy-wall; heat transfer enhancement; visualization technique (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/23/4456/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/23/4456/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:23:p:4456-:d:289927
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().