EconPapers    
Economics at your fingertips  
 

Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter

Akhtar Hussain, Bui Van-Hai, Ju-Won Baek and Hak-Man Kim
Additional contact information
Akhtar Hussain: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea
Bui Van-Hai: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea
Ju-Won Baek: Division of Smart Grid, Korea Electrotechnology Research Institute, Changwon 51543, Korea
Hak-Man Kim: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea

Energies, 2019, vol. 12, issue 23, 1-17

Abstract: Optimal sizing of stationary energy storage systems (ESS) is required to reduce the peak load and increase the profit of fast charging stations. Sequential sizing of battery and converter or fixed-size converters are considered in most of the existing studies. However, sequential sizing or fixed-converter sizes may result in under or oversizing of ESS and thus fail to achieve the set targets, such as peak shaving and cost reduction. In order to address these issues, simultaneous sizing of battery and converter is proposed in this study. The proposed method has the ability to avoid the under or oversizing of ESS by considering the converter capacity and battery size as two independence decision variables. A mathematical problem is formulated by considering the stochastic return time of electrical vehicles (EVs), worst-case state of charge at return time, number of registered EVs, charging level of EVs, and other related parameters. The annualized cost of ESS is computed by considering the lifetime of ESS equipment and annual interest rates. The performance of the proposed method is compared with the existing sizing methods for ESS in fast-charging stations. In addition, sensitivity analysis is carried out to analyze the impact of different parameters on the size of the battery and the converter. Simulation results have proved that the proposed method is outperforming the existing sizing methods in terms of the total annual cost of the charging station and the amount of power buying during peak load intervals.

Keywords: battery and converter; electric vehicles; energy storage system; fast charging station; optimization; sizing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/23/4516/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/23/4516/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:23:p:4516-:d:291599

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4516-:d:291599