EconPapers    
Economics at your fingertips  
 

A Novel Deep Feature Learning Method Based on the Fused-Stacked AEs for Planetary Gear Fault Diagnosis

Xihui Chen, Aimin Ji and Gang Cheng
Additional contact information
Xihui Chen: College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
Aimin Ji: College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
Gang Cheng: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

Energies, 2019, vol. 12, issue 23, 1-18

Abstract: Planetary gear is the key component of the transmission system of electromechanical equipment for energy industry, and it is easy to damage, which affects the reliability and operation efficiency of electromechanical equipment of energy industry. Therefore, it is of great significance to extract the useful fault features and diagnose faults based on raw vibration signals. In this paper, a novel deep feature learning method based on the fused-stacked autoencoders (AEs) for planetary gear fault diagnosis was proposed. First, to improve the data learning ability and the robustness of feature extraction process of AE model, the sparse autoencoder (SAE) and the contractive autoencoder (CAE) were studied, respectively. Then, the quantum ant colony algorithm (QACA) was used to optimize the specific location and key parameters of SAEs and CAEs in deep learning architecture, and multiple SAEs and multiple CAEs were stacked alternately to form a novel deep learning architecture, which gave the deep learning architecture better data learning ability and robustness of feature extraction. The experimental results show that the proposed method can address the raw vibration signals of planetary gear. Compared with other deep learning architectures and shallow learning architecture, the proposed method has better diagnosis performance, and it is an effective method of deep feature learning and fault diagnosis.

Keywords: planetary gear; the fused-stacked AEs; deep feature learning; fault diagnosis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/23/4522/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/23/4522/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:23:p:4522-:d:291666

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4522-:d:291666