Modeling and Simulation Performance Evaluation of a Proposed Calorimeter for Testing a Heat Pump System
Kofi Owura Amoabeng,
Kwang Ho Lee and
Jong Min Choi
Additional contact information
Kofi Owura Amoabeng: Graduate School of Mechanical Engineering, Hanbat National University, Yuseong-Gu, Daejeon 34158, Korea
Kwang Ho Lee: Department of Architecture, Korea University, Sungbuk-ku, Seoul 02841, Korea
Jong Min Choi: Department of Mechanical Engineering, Hanbat National University, Yuseong-Gu, Daejeon 34158, Korea
Energies, 2019, vol. 12, issue 23, 1-22
Abstract:
The energy consumption for heating and cooling in the building sector accounts for more than one-third of total energy used worldwide. In view of that, it is important to develop energy efficient cooling and heating systems in order to conserve energy in buildings as well as reduce greenhouse gas emissions. In both commercial and residential buildings, the heat pump has been adopted as an energy efficient technology for space heating and cooling purposes as compared to conventional air conditioning systems. However, heat pumps undergo standard testing, rating, and certification procedures to ascertain their system performance. Essentially, the calorimeter for testing heat pumps has two test chambers to serve as a heat source and heat sink to control and maintain the test conditions required to simulate the heat pump indoor and outdoor units, simultaneously. In air-to-air heat pump units, the conventional calorimeter controls the air temperature and humidity conditions in each test chamber with separate air handling units consisting of a refrigerator, heater, humidifier, and supply fan, which results in high energy consumption. In this study, using dynamic modeling and simulation, a new calorimeter for controlling air conditions in each test chamber is proposed. The performance analysis based on simulation results showed that the newly proposed calorimeter predicted at least 43% energy savings with the use of a heat recovery unit and small refrigerator capacity as compared to the conventional calorimeter that utilized a large refrigerator capacity for all the weather conditions and load capacities that we investigated.
Keywords: air handling unit; calorimeter; energy consumption; heat pump; heat recovery unit; test chamber (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/23/4589/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/23/4589/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:23:p:4589-:d:293361
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().