Model Predictive Control-Based Coordinated Control Algorithm with a Hybrid Energy Storage System to Smooth Wind Power Fluctuations
Haisheng Hong and
Quanyuan Jiang
Additional contact information
Haisheng Hong: Guangzhou Power Supply Bureau Co., Ltd., Guangzhou 510620, China
Quanyuan Jiang: College of Electrical Engineering, Zhejiang University, Hangzhou 210027, China
Energies, 2019, vol. 12, issue 23, 1-17
Abstract:
Stochastically fluctuating wind power has an escalating impact on the stability of power grid operations. To smooth out short- and long-term fluctuations, this paper presents a coordinated control algorithm using model predictive control (MPC) to manage a hybrid energy storage system (HESS) consisting of ultra-capacitor (UC) and lithium-ion battery (LB) banks. In the HESS-computing period, the algorithm minimizes HESS operating costs in the subsequent prediction horizon by optimizing the time constant of a flexible first-delay filter (FDF) to obtain the UC power output. In the LB-computing period, the algorithm keeps the optimal time constant of the FDF from the previous period to directly obtain the power output of the UC bank to minimize the power output of the LB bank in the next prediction horizon. A relaxation technique is deployed when the problem is unsolvable. Thus, the fluctuation mitigation requirements are fulfilled with a large probability even in extreme conditions. A state-of-charge (SOC) feedback control strategy is proposed to regulate the SOC of the HESS within its proper range. Case studies and quantitative comparisons demonstrate that the proposed MPC-based algorithm uses a lower power rating and storage capacity than other conventional algorithms to satisfy one-minute and 30-min fluctuation mitigation requirements (FMR).
Keywords: index terms—wind power fluctuations; hybrid energy storage system (HESS); model predictive control (MPC); flexible first-delay-filter (FDF); fluctuation mitigation requirements (FMR) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/23/4591/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/23/4591/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:23:p:4591-:d:293463
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().