EconPapers    
Economics at your fingertips  
 

Modelling and Design of a Low-Level Turn-to-Turn Fault Protection Scheme for Extra-High Voltage Magnetically Controlled Shunt Reactor

M. Asghar Khan and Tao Zheng
Additional contact information
M. Asghar Khan: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronics Engineering, North China Electric Power University, Beijing 102206, China
Tao Zheng: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronics Engineering, North China Electric Power University, Beijing 102206, China

Energies, 2019, vol. 12, issue 24, 1-20

Abstract: The objective of this paper is to model and design a low-level turn-to-turn fault (T2TF) protection scheme for a magnetically controlled shunt reactor (MCSR), during incipient stage under 10% to 100% operating capacity. Due to the structural and functional differences of all the three windings in extra-high voltage (EHV) MCSR, a separate mechanism of detecting a T2TF in each winding is necessary. For this purpose, a detailed mathematical and structural analysis of the model is performed, and a comprehensive protection scheme based on the internal changes in magnetic and electric parameters of the windings is formulated to detect 3% T2TF in power windings (PWs), control windings (CtrWs), compensation windings (CpWs), and to differentiate it from other abnormalities. The main idea of the scheme is to perform the currents magnitude comparison of respective winding with the predefined settings values and decide necessary action. The proposed scheme is also capable of identifying the faulty winding along with faulty phase. The scheme is tested under different operating capacities (10%, 50%, 100%), and other types of unusual conditions, i.e., direct energization, pre-excited energization, power regulation, internal and external faults. The results demonstrate the effectiveness of the proposed scheme. The work of this paper is applicable in the areas of power system transmission and power system protection. The simulations are carried out on MATLAB/Simulink-based models.

Keywords: faulty winding; magnetically controlled shunt reactor; protection scheme; reactive power compensation; turn-to-turn fault (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4628/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4628/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4628-:d:294707

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4628-:d:294707