Exergy Analysis and Process Optimization with Variable Environment Temperature
Michel Pons
Additional contact information
Michel Pons: LIMSI, CNRS, Université Paris-Saclay, Rue du Belvédère, bât 507, 91405 Orsay Cedex, France
Energies, 2019, vol. 12, issue 24, 1-19
Abstract:
In its usual definition, exergy cancels out at the ambient temperature which is thus taken both as a constant and as a reference. When the fluctuations of the ambient temperature, obviously real, are considered, the temperature where exergy cancels out can be equated, either to the current ambient temperature (thus variable), or to a constant reference temperature. Thermodynamic consequences of both approaches are mathematically derived. Only the second approach insures that minimizing the exergy loss maximizes performance in terms of energy. Moreover, it extends the notion of reversibility to the presence of an ideal heat storage. When the heat storage is real (non-ideal), the total exergy loss includes a component specifically related to the heat exchanges with variable ambient air. The design of the heat storage can then be incorporated into an optimization procedure for the whole process. That second approach with a constant reference is exemplified in the case study of heat pumping for heating a building in wintertime. The results show that the so-obtained total exergy loss is the lost mechanical energy, a property that is not verified when exergy analysis is conducted following the first approach.
Keywords: thermodynamics; second law; reference dead state; process optimization; methodology (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4655/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4655/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4655-:d:295405
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().