Life Cycle Costing and Eco-Efficiency Assessment of Fuel Production by Coprocessing Biomass in Crude Oil Refineries
Pedro L. Cruz,
Diego Iribarren and
Javier Dufour
Additional contact information
Pedro L. Cruz: Low Carbon and Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal
Diego Iribarren: Systems Analysis Unit, IMDEA Energy, 28935 Móstoles, Spain
Javier Dufour: Systems Analysis Unit, IMDEA Energy, 28935 Móstoles, Spain
Energies, 2019, vol. 12, issue 24, 1-17
Abstract:
Biobased liquid fuels are becoming an attractive alternative to replace, totally or partially, fossil ones in the medium term, mainly in aviation and long-distance transportation. In this regard, coprocessing biomass-derived feedstocks in conventional oil refineries might facilitate the transition from the current fossil-based transport to a biobased one. This article addresses the economic and environmental feasibility of such a coprocessing strategy. The biomass-based feedstocks considered include bio-oil and char from the fast pyrolysis of lignocellulosic biomass, which are coprocessed in fluid catalytic cracking (FCC), hydrocracking, and/or cogasification units. The assessment was based on the standardized concept of eco-efficiency, which relates the environmental and economic performances of a system following a life-cycle approach. Data from a complete simulation of the refinery process, from raw materials to products, were used to perform a life cycle costing and eco-efficiency assessment of alternative configurations of the coprocessing strategy, which were benchmarked against the conventional fossil refinery system. Among other relevant results, the eco-efficiency related to the system’s carbon footprint was found to improve when considering coprocessing in the hydrocracking unit, while coprocessing in FCC generally worsens the eco-efficiency score. Overall, it is concluded that coprocessing biomass-based feedstock in conventional crude oil refineries could be an eco-efficient energy solution, which requires a careful choice of the units where biofeedstock is fed.
Keywords: eco-efficiency; life cycle costing; life cycle assessment; coprocessing; biomass (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4664/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4664/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4664-:d:295574
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().