Hybrid Energy Management System for Operation of Wind Farm System Considering Grid-Code Constraints
Bui Van-Hai,
Akhtar Hussain,
Woon-Gyu Lee and
Hak-Man Kim
Additional contact information
Bui Van-Hai: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Akhtar Hussain: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Woon-Gyu Lee: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Hak-Man Kim: Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
Energies, 2019, vol. 12, issue 24, 1-19
Abstract:
In this paper, a hybrid energy management system is developed to optimize the operation of a wind farm (WF) by combining centralized and decentralized approaches. A two-stage optimization strategy, including distributed information sharing (stage 1); and centralized optimization (stage 2) is proposed to find out the optimal set-points of wind turbine generators (WTGs) considering grid-code constraints. In stage 1, cluster energy management systems (CEMSs) and transmission system operator (TSO) interact with their neighboring agents to share information using diffusion strategy and then determine the mismatch power amount between the current output power of WF and the required power from TSO. This amount of mismatch power is optimally allocated to all clusters through the CEMSs. In stage 2, a mixed-integer linear programming (MILP)-based optimization model is developed for each CEMS to find out the optimal set-points of WTGs in the corresponding cluster. The CEMSs are responsible for ensuring the operation of WF in accordance with the requirements of TSO (i.e., grid-code constraints) and also minimizing the power deviation for the set-points of WTGs in each cluster. The minimization of power deviation helps to reduce the internal power fluctuations inside each cluster. Finally, to evaluate the effectiveness of the proposed method, several case studies are analyzed in the simulations section for operation of a WF with 20 WTGs in four different clusters.
Keywords: grid-code constraints; hybrid energy management system; optimization; power deviation; wind farm operation; wind turbine generator (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4672/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4672/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4672-:d:295673
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().